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Abstract.   Fire is an important tool in tropical forest management, as it alters forest com-
position, structure, and the carbon budget. The United Nations program on Reducing 
Emissions from Deforestation and Forest Degradation (REDD+) aims to sustainably manage 
forests, as well as to conserve and enhance their carbon stocks. Despite the crucial role of fire 
management, decision-making on REDD+ interventions fails to systematically include fires. 
Here, we address this critical knowledge gap in two ways. First, we review REDD+ projects 
and programs to assess the inclusion of fires in monitoring, reporting, and verification (MRV) 
systems. Second, we model the relationship between fire and forest for a pilot site in Colombia 
using near-real-time (NRT) fire monitoring data derived from the Moderate Resolution 
Imaging Spectroradiometer (MODIS). The literature review revealed fire remains to be incor-
porated as a key component of MRV systems. Spatially explicit modeling of land use change 
showed the probability of deforestation declined sharply with increasing distance to the nearest 
fire the preceding year (multi-year model area under the curve [AUC] 0.82). Deforestation 
predictions based on the model performed better than the official REDD early-warning sys-
tem. The model AUC for 2013 and 2014 was 0.81, compared to 0.52 for the early-warning 
system in 2013 and 0.68 in 2014. This demonstrates NRT fire monitoring is a powerful tool to 
predict sites of forest deforestation. Applying new, publicly available, and open-access NRT 
fire data should be an essential element of early-warning systems to detect and prevent deforest-
ation. Our results provide tools for improving both the current MRV systems, and the deforest-
ation early-warning system in Colombia.
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Introduction

Fires are a central force shaping the Earth system, and 
have particularly large effects on tropical landscapes. 
Although climate, human actions, and their interactions 
strongly influence fire incidence (Bowman et  al. 2009), 
tropical fire dynamics are currently changing. Tropical 
fires have increased in frequency and extent (Cochrane 
2003, Barlow et al. 2012, Chen et al. 2013), for reasons 
ranging from decreases in rainfall and increases in 
extreme climatic events, to the expansion of human activ-
ities (Bowman et  al. 2009, Aragao and Shimabukuro 
2010, Bowman and Murphy 2011, Brando et al. 2014). 
Anthropogenic tropical fires, in particular, have many 
uses and intents, most frequently being associated with 
agricultural activities (Morton et  al. 2007, 2013, Chen 
et  al. 2013). Fires are used in agricultural practices 
including traditional uses (e.g., charcoal production), 
and intensive agro-industry (e.g., soy bean, sugar cane; 

Morton et al. 2008, Alencar et al. 2015). Fires are also 
used as a forest clearing tool, ultimately resulting in land 
cover change (Fearnside 2005, Chen et  al. 2013). This 
particular use makes fires potentially predictive of forest 
fragmentation and deforestation, as well as important 
factors in forest degradation.

From an ecological perspective, the first and most 
obvious consequences of forest fires are increased tree 
mortality (up to 50% of trees), and biomass loss (up to 
80% after a third fire, depending on previous fires and 
land use history; Barlow et al. 2012). These consequences 
are followed by the release of significant amounts of 
carbon emissions that in drought years exceed the quan-
tities emitted from deforestation alone (Houghton et al. 
2000, Barlow et  al. 2012, Houghton 2012). Recurring 
fires can have dramatic consequences for the mortality of 
all trees, regardless of whether fires are used for forest 
clearing or understory management. For example, 
recurring fires can lead to functional deforestation 
(Barlow et al. 2012), or unintentional (Cochrane 2003) 
deforestation. Further fire effects on both forest structure 
and species composition (Cochrane and Schulze 1999, 
Barlow and Peres 2008) can affect ecosystem function 
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and reduce the rates of carbon sequestration capacity in 
tropical forests (Balch et al. 2015).

Complex feedbacks also exist among fire, deforest-
ation, and forest fragmentation/degradation, often 
resulting in higher vulnerability to future fires (Cochrane 
et  al. 1999, Cochrane and Laurance 2002, Cochrane 
2009). In general, fire incidence is higher in areas of 
deforestation where fire is used as a tool for forest clearing 
(Aragão et al. 2008, Silvestrini et al. 2011, Armenteras 
et  al. 2013a). Once the landscape has shifted from 
majority forest to majority agriculture, forest fires may 
increase from edge effects and higher exposure of 
remaining forest fragments, while understory fires may 
become more common from accidental/escaped burns 
from adjacent farms (Soares-Filho et al. 2012). Indeed, 
fragmentation increases the susceptibility of forests to 
fire by increasing the extent of edges, and through 
biomass collapse and associated microclimate changes 
(low relative humidity, high wind exposure) exacerbated 
during droughts (Cochrane 2003, Armenteras et  al. 
2013a). Recurring understory fires also make forest 
recovery more challenging, and therefore prone to further 
degradation and tree cover loss.

Given the high incidence of fires, observed and 
potential increases in burning activity, and the effects of 
forest fires on regional and global carbon cycles, several 
authors have highlighted the importance of fires in 
Reducing Emissions from Deforestation and Degradation 
[REDD+] and enhancing forest carbon stocks (Aragão 
and Shimabukuro 2010, Barlow et al. 2012). Surprisingly, 
the extent to which REDD+ considers and incorporates 
forest fires in implementing programs varies greatly from 
local to international levels. A recent revision of REDD 
projects for their biodiversity co-benefits reports only 
four projects out of 80 would monitor fire as a threat to 
biodiversity (Panfil and Harvey 2016). Although forest 
fires have critical consequences for REDD+, the 2011–
2015 global UN-REDD strategy did not explicitly con-
template fires as a main focus areas (Barlow et al. 2012). 
Several non Annex I countries, however, have addressed 
biomass burning in their national strategies or action 
plans by including fires and fire-related forest loss in their 
greenhouse gas emissions to the United Nations 
Framework Convention on Climate Change (UNFCCC), 
or by including fires in the development of their moni-
toring, reporting, and verification (MRV) systems 
(Romijn et al. 2012). In fact, most countries have achieved 
great progress in mapping and monitoring deforestation, 
but perhaps less on biomass burning. Fire data collection 
and management, analyses, and incorporation into MRV 
systems, or even the estimation of emission factors 
remains a crucial capacity gap (Romijn et al. 2012).

The existing gap in forest fire accounting has the 
potential to limit mechanisms such as REDD+, as well as 
national monitoring efforts seeking to inform decisions 
on forest and emissions. Even though implementation of 
fire monitoring is highly uneven, currently available 
remotely sensed data sources could be used to quickly 

improve biomass burn and forest change mapping, 
and  predicting deforestation. Remotely sensed data, 
such  as Landsat and Moderate Resolution Imaging 
Spectroradiometer (MODIS) products offer systematic 
measures of the Earth’s surface with a relatively high fre-
quency. The daily active fire product derived from 
MODIS, in particular, can provide near-real-time (NRT) 
monitoring of fires. Integrating such data sets with 
existing frameworks based on the relationship between 
fire and forest fragmentation, and associated feedbacks, 
can improve forest management and monitoring efforts 
in many places. Additionally, using frequent Earth obser-
vations to understand processes related to deforestation 
and degradation can improve the implementation of 
mechanisms such as REDD+, and contribute to reducing 
emissions from tropical forests, while helping con
serve  forest carbon stocks and reduce susceptibility to 
unintended fires.

Here, we address the critical gap in fire accounting in 
two ways. First, we review and synthesize the current 
ways in which REDD+ programs monitor fire and its 
consequences in non-annex I countries. Second, we use 
near real time (NRT) fire monitoring to examine the rela-
tionship between spatial patterns of fire, and forest frag-
mentation (i.e., forest edge) and deforestation. These 
analyses address the potential to extend current mapping 
and monitoring strategies by deploying NRT fire 
detection and spatial analysis to predict forest loss. We 
aim to help develop early-warning systems to identify 
deforestation-prone areas using NRT fire data, and 
therefore improve resource allocation and land man-
agement. We focus spatial analyses on a pilot area within 
a deforestation hotspot in Colombia, and test models to 
predict deforestation hotspots using simple measures 
such as the distance to the nearest fire and the distance to 
the forest edge. We assessed the potential for integrating 
these spatial relationships into the current early-warning 
system by comparing the officially published deforest-
ation early-warning results for 2013 and 2014 derived 
from Colombia’s REDD program (IDEAM 2013, 
IDEAM 2014). Finally we provide the prediction of 
deforestation for 2015 for the pilot area.

Methodology

Study area

The study site is located in the northwest region of the 
Amazon basin corresponding to an area of ~1 378 350 ha 
between the municipalities of San José del Guaviare and 
El Retorno in Guaviare, Colombia (Fig. 1). The southern 
part of the study area overlaps with the Nukak national 
natural reserve and includes five indigenous groups. The 
altitude ranges between 100 and 200 m with a tropical 
very humid and mono-modal climate, annual rainfall 
varying from 2800 to 3500 mm, and an average annual 
temperature of 24.5°C. This region supports high floristic 
and ecological complexity as a result of its geological, 
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topographic, soil, and water gradients and includes 
several tropical rain forest systems (Armenteras et  al. 
2013b).

Economic activities in the region are primarily related 
to natural resource extraction, followed by the estab-
lishment of pastures and crops (Ariza et  al. 1998). 
Economic and land use activities directly related to fire are 
largely driven by local agricultural practices, in particular, 
the maintenance and creation of pastures for grazing. 
Livestock is primarily concentrated near municipalities 
with ongoing development of infrastructure and roads. 
The study area lies on the edge of an active colonization 
front, with dynamic land use and land cover change and 
high deforestation rates (Dávalos et  al. 2011, 2014, 
Armenteras et al. 2013b). Fire occurrence in the study site 
can typically be divided into three categories: (1) mainte-
nance of current pasture land, in which fire is primarily 
used to stimulate grass regeneration; (2) clearing of 

vegetation to create new areas for agriculture; and 
(3) escaped fires associated with pasture maintenance that 
spread into nearby forests. For monitoring purposes, it is 
important to discriminate intentional deforestation and 
escaped fires from other types of fire. Escaped fires, in par-
ticular, affect forest edge health, and increase the suscep-
tibility of the forest to future deforestation. We used 2001 
as the starting year for analyses because of the availability 
of high quality geographic data for this area, which has 
been extensively validated with in situ observations 
(Armenteras et al. 2013b). The remoteness of the study 
area reinforces the need for maximizing the use of remotely 
sensed Earth observations for monitoring purposes.

Data and analysis

Review of fire monitoring in REDD programs or projects.— 
To discover where fire monitoring was integrated within 

Fig.  1.  Land use land cover map for 2009 and location of the study area in Colombia. [Colour figure can be viewed at 
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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MRV-REDD systems, we conducted a document review 
approach focused on REDD+ programs in non-annex I 
countries. The review was limited to project documenta-
tion for non-annex I countries available online up to De-
cember 2015. We focus here on non annex I countries, as 
REDD deforestation efforts emphasize these countries. 
Relevant key terms were identified throughout each docu-
ment, including: fire, monitoring, emissions, deforestation, 
forest degradation, burning, and forest loss.

In the document review, we identified the presence of 
specific fire monitoring efforts, and the approaches used 
in these efforts. The context of these terms was used to 
determine the presence of, and approach used, for spe-
cific fire monitoring objectives of the REDD projects. 
Through an iterative process—first by the lead author, 
then by the primary co-author, and finally through a joint 
review by all authors—these documents were categorized 
based on the presence and treatment of fire monitoring. 
Additionally, the geographic distribution of fire moni-
toring strategies was mapped. The results from this 
review offer a measurement of the prevalence and nature 
of the strategies used to monitor fires. We reviewed a total 
of 55 documents, including both REDD project docu-
ments and peer reviewed articles related to specific 
REDD projects or initiatives at regional, national, or 
subnational levels.

Fire data.—We used the Collection 6 active fire detec-
tions derived from MODIS on board Aqua and Terra 
(Giglio et al. 2003, 2016). This data set is free and publicly 
available. Daily files covering January 2001 to December 
2014 were downloaded in ASCII format (monthly files 
comprising Terra and Aqua; available online).6 The 
MODIS fire data provided the center coordinate of 1-km 
nominal pixels with detected fire activity. Each obser-
vation in the MODIS product included a confidence level 
(Giglio et al. 2003). To reduce the chances of including 
observations unrelated to fire incidence, we selected only 
observations with medium to high confidence levels (con-
fidence value ≥30). The final data set consisted of fire 
occurrences between 2001 and 2014 for the study area 
during the prevailing fire season (January to March).

Forest data.—Forest cover was assessed in two ways. 
First, we used a global annual forest cover product con-
sisting of two classes (forest and non-forest) and based 
on Landsat 4, 5, 7, and 8 satellite data (Hansen et  al. 
2010). We used this forest cover product for the years 
of 2001–2014 to assess the dynamics of forest loss in the 
pilot area. A second land cover classification data set 
consisting of four land classes (forest, secondary forest, 
pasture, and burned area), in addition to clouds and 
shadows (classified as missing data) was derived from 
2009 Landsat TM imagery (Armenteras et  al. 2013b). 
That regional classification scheme was accomplished 
using a maximum likelihood supervised classification 

method and validated using in situ observations. This 
single-year, regionally adjusted land classification data 
set was used for contextual purposes and later reclassi-
fied into a binary (forest and non-forest) format to match 
the Hansen et al. (2010) data set.

Statistical approach.—To control for spatial autocorrela-
tion, we grouped observations into sub-municipal units or 
veredas, roughly equivalent to U.S. census tracts, obtained 
from an online database (OCHA Colombia et al. 2016). 
These units were then used to calculate a neighbor ma-
trix as outlined below. The relationship between fires and 
deforestation was quantified by the log10(distance) (in 
kilometers) between all pixels and the nearest fire in old 
growth or secondary forest the preceding year. Analyses 
encompassed fire observations from 2001 to 2014, and 
forest lost since 2002 through 2015. A total of 1 271 713 ha 
of forests were modeled in 3605 pixels for 13 yr. The final 
data set encompassed 46 865 dated pixels.

To measure the ability to predict deforestation based 
on forest fires, we used spatially explicit landscape 
models. The neighbor matrix within ~55 km of each sub-
municipal unit was calculated for every one of 45 sub-
municipalities. Deforestation was modeled as a binomial 
response in multi-level regressions. The spatial com-
ponent was defined by a random vector at the level of 
sub-municipalities, given by: 

where ni is the number of neighbors of the political unit i, 
i~j are the two neighboring units i and j, and τ, the pre-
cision parameter, is the variance of the effect across dif-
ferent sets of neighbors (Besag and Kooperberg 1995). 
The relationship between deforestation and the distance 
to the nearest fire the preceding year was fitted as a fixed, 
or sample-wide coefficient.

We fitted regressions with several combinations of pre-
dictors using nested Laplace approximations to approx-
imate Bayesian inference for latent Gaussian models 
(Rue et al. 2009) In particular, we fitted models with and 
without bins based on the log10(distance) (in km) to the 
edge of the forest. Four bins of distance to the edge were 
included as an additional random effect defined by a 
random walk of order 2 (rwr2) assuming independent 
second-order increments, with density defined by 

where Q = τR, R is the structure of the neighborhood in 
time steps for the model, and τ accounts for the variance 
in structure. The year in which deforestation was recorded 
was also included as a potential rwr2 random effect. We 
used the INLA package v.0.0-1455098891 (Rue et  al. 
2016) implemented in R v.3.2.4 (R Development Core 
Team 2016) to fit all models. Data and scripts are deposited 
in the Dryad Digital Deposit (see Data Availability).6ftp://fuoco.geog.umd.edu
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We used Bayes factors to compare models, using a 
purely spatial model based on sub-municipal units (Eq. 1) 
without any predictors (i.e., considering neither distances 
to fires the previous year, nor distance to the forest edge) 
as the baseline model. The Bayes factor summarizes the 
evidence in favor of one statistical model compared to 
another based on the empirical data (Kass and Raftery 
1995), given by 

where mL is the marginal likelihood of a model, and 
model2 in this case corresponds to the purely spatial 
model. We follow guidelines by Kass and Raftery (2012) 
to interpret Bayes factors: BF <−2 suggests preference 
for model2, BF >2 for model1, 6< BF <10 strong evidence 
for model1, and BF >10 represents decisive evidence for 
model1. Table 1 summarizes the models, their log mar-
ginal likelihoods and Bayes factors. We then used the 
best-supported model to predict deforestation. Posterior 
distributions of parameters for the best-supported model 
are shown in Table 2.

We used the area under the curve (AUC) of the receiver-
operator characteristic (ROCR) to quantify the success 
for the model in predicting deforestation (Hanley and 
McNeil 1982). This statistic measures the probability that 
a randomly selected cell is correctly classified as 1 or 0, 
based on the log-odds predicted by the function obtained 
from the model. The AUC ranges from 0 to 1, with 0.5 
indicating a completely random model, and 1 indicating a 
perfect model (Hanley and McNeil 1982). The main 
advantage of using this statistic is the ability to separate 
location from quantity in the performance of deforest-
ation models (Pontius and Batchu 2003), generating an 
unbiased assessment of error in predictions. The ROC 
and corresponding AUC were obtained using the ROCR 
R package (Sing et  al. 2005). The OptimalCutpoints 
R package (López-Ratón et al. 2014) was used to calculate 

confidence interval of the AUC. We also calculated the 
AUC and its confidence interval from existing early-
warning system predictions for 2013 and 2014. Finally we 
provide the prediction for 2015 deforestation.

Results

Document review revealed 58% (32 documents) of the 
projects fail to (1) explicitly identify fire as a driver of 
deforestation and/or forest degradation and/or (2) con-
sider fire monitoring as a REDD objective. Fire was 
referred to as a tool used for preparing agricultural lands 
and identified as a forest disturbance in 24 of the docu-
ments reviewed. Thirteen documents identified a clear 
relationship between fire and deforestation, in which fire 
is considered a driver of deforestation. Yet, with regard 
to emissions, fire is primarily associated with land cover 
change from forest to agriculture, as opposed to direct 
emission resulting from the fire occurrences themselves. 
Fire monitoring has a more limited representation, men-
tioned in only four documents. The majority of the doc-
uments, 17 out of the 23 documents that do mention fire, 
state the intent to develop fire monitoring processes as 
related to deforestation and forest degradation. These 
monitoring strategies are centered on the use of infor-
mation from satellite data, e.g., MODIS satellite imagery 
or LANDSAT for mapping burnt areas.

High annual variability was found in the active fire 
data between 2001 and 2014 (Figs. 2, 3A). The number of 
active fires detected ranged from 158 to 487, with a 10-yr 
average of 236 ± 91. The year with the most active fires 
was 2007, followed by 2004 with 263 and 2010 with 253, 
while 2001, 2002, and 2011 were the year with fewest 
active fires detected. The inter-annual variability in forest 
loss is also evident during that period, with 2006, 2008, 
and 2010 showing the highest forest loss totaling, in 
order, 2902, 2735, and 3832 ha (Figs. 2, 3B).

(3)log BF= log (mL(model1))− log (mL(model2))

Table 1.  Spatial models, log marginal likelihoods, and log Bayes factors (BF).

Sample-wide (fixed) terms
Group-specific  
(random) terms

log marginal  
likelihood log BF

None spatial −5238.95 —
Distance to nearest forest fire spatial −1679.33 3559.64
Distance to nearest forest fire, distance to edge spatial −4794.66 444.29
Distance to nearest forest fire spatial, year −4961.39 277.56
Distance to nearest forest fire, distance to edge spatial, year −4813.92 425.03

Notes: Bayes factors compare the evidence in favor of the statistical model compared to the first, purely spatial, model. BF >10 
represents decisive evidence for the model given (Kass and Raftery 1995). The best-supported model is shown in boldface type.

Table 2.  Posterior distributions of parameters for the best-supported model.

Parameter Type
2.5th  

percentile Mean Median
97.5th  

percentile

Intercept sample-wide (fixed) −3.18 −2.84 −2.84 −2.51
Distance to nearest forest fire sample-wide (fixed) −2.39 −2.06 −2.06 −1.72
Precision spatial sub-municipality-specific (random) 0.0629 0.1528 0.1403 0.3154

Note: See Table 1 for Bayes factor in favor of this model.
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The best-supported model of deforestation had the dis-
tance to the nearest forest fire the preceding year as a 
strong and negative predictor of the probability of losing 
forest (Tables 1 and 2, Fig. 3C). The bin of the distance to 
the forest edge was not indicative of deforestation in the 
best-fit model (Tables 1, 2). The year of occurrence was 
not included in the best-fit model, suggesting annual 
effects are small and the relationship between deforest-
ation and distance to fires was similar across years. The 
probability of deforestation drops with distance to the 

nearest forest fire the preceding year, and is highest at the 
distance of 0, meaning sites where the fires occur have the 
highest possible probability of deforestation the following 
year (Table 2). The resulting best-fit model was validated 
with observed deforestation, scoring an AUC of 0.818 
(resampling confidence interval of 0.794 to 0.842, Fig. 3D).

The official deforestation early-warnings maps for 
2013 and 2014 can be seen in Fig. 4A and B. Predictions 
from the fitted model were conducted for 2013 and 2014 
by excluding the deforestation response data from each 

Fig. 2.  (A) Number of MODIS satellite active fire pixels detected and (B) hectares of forest loss between 2001–2014 for the pilot 
area.
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of the two years (Fig. 4C, D). The resulting models were 
similarly predictive with AUCs of 0.811 (95% confidence 
intervals = 0.786, 0.834). The early-warning system for 
2013 had an AUC of 0.519 (95% confidence 
interval = 0.432, 0.606), while the early-warning system 
prediction for 2014 had an AUC of 0.681 (95% confi-
dence interval = 0.583, 0.779; Fig. 4). For each of these 
two  years, the fitted model outperformed the early-
warning system.

Discussion

Given the central role of fire in shaping landscapes and 
contributing to regional and global cycles, it is important 
to elucidate its dynamics in order to minimize the negative 
effects of tropical fires, and link fire dynamics to direct 
interventions within REDD+. We investigated how coun-
tries are considering fire as a tool to monitor and/or 
predict deforestation within REDD programs or projects, 

and found most of them do not use available fire near-
real-time (NRT) data for this purpose. We also aimed to 
determine whether basic spatial relationships, distances to 
fire and to the forest edge, were good predictors of 
deforestation. We found distance to the nearest fire is an 
excellent predictor of future deforestation. It is likely that 
collinearity with the fire distance alters the effect of the 
distance to the edge of the forest. These results demon-
strate proximity to an active fire as detected through NRT 
fire observations is a useful early indicator of areas most 
likely to be deforested in subsequent years. Given the 
extensive geographical area monitored for deforestation 
in many countries, simple spatial relationships, such as 
those presented here, can help focus deforestation moni-
toring and management efforts (Fig. 5).

It has been recently suggested that countries should 
link forest area changes to specific driver activities and 
follow-up land use (Salvini et al. 2014). In our case study 
area, the majority of deforestation supports the expansion 

Fig. 3.  Modeled probability of deforestation as a function of distance from fires the preceding year. (A) Observed fires, (B) 
observed deforestation, (C) best-fit multiyear model, (D) area under the curve (AUC). [Colour figure can be viewed at 
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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Fig.  4.  Comparison of official deforestation early warnings and their AUC for (A) 2013 and (b) 2014 with deforestation 
predicted by the model of Table 2 for (C) 2013 and (D) 2014. [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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of pasture. As escaped fires contribute to forest loss, 
forest degradation, and emissions, monitoring and 
potentially managing such fires is crucial to REDD+ 
efforts. We therefore recommend that in countries where 
fire is a concern, monitoring strategies should be extended 
both improve deforestation predictions, and to monitor 
effectiveness of any fire management and control plan 
they might propose as an intervention within REDD+ 
national strategies (Salvini et al. 2014).

The approach proposed here intentionally seeks to use 
freely available data and statistical approaches, to limit 
data and analysis inputs in the monitoring and man-
agement frameworks, and deploy basic spatial relation-
ships, distance, as a starting point for improvement of 
such frameworks. Taken together, the free data and mod-
eling approaches identify a simple spatial pattern: dis-
tance to fires predict the detection of areas of concern for 
future deforestation. These findings are in accordance 
with similar works (Salvini et  al. 2014). The approach 
presented here in the Colombia case study supports high 
feasibility for national monitoring offices in many parts 
of the tropics with limited staff and technical capabilities, 
and few resources. Updating and tailoring the basic ana-
lytical approach used here is simple, and only requires 
coding annual observations in a grid. While the benefit of 
the approach to national monitoring offices would be 
refined identification of areas warranting concentrated 
monitoring and management efforts due to risk for future 
deforestation.

Incorporating active fire data into deforestation and 
emissions monitoring frameworks, however, remains 
challenging because the fire data have limitations. 
Currently available fire data have limited resolution, 
and cloud cover can obstruct the detection of fires, 
underestimating fire occurrence (Giglio et  al. 2006, 
Schroeder et  al. 2008). This challenge is somewhat 
addressed by focusing on detecting fires during the dry 

season, when cloud cover is typically lower. Although 
this framework may also underestimate fire occurrence, 
this is also true of comparable approaches (see for 
example Müller et al. 2013).

The resolution (1-km) of the MODIS fire data is 
another potential limitation when analyzing fire–forest 
spatial patterns. The resolution of the data could limit 
the fire–forest relationship detected. We anticipate the 
higher resolution (375  m) Visible Imaging Infrared 
Radiometer Suite (VIIRS) will become widely available, 
improving active fire data. As this improved data set 
becomes fully available, it will be critical to reexamine 
the fire–forest relationship, at higher resolution. The 
archives of VIIRS data are not yet available, but weekly 
data is freely available to the public. Currently, 
potential early-warning locations for deforestation 
monitoring might be advanced with the VIIRS fire 
observations. For retrospective analysis, however, 
available MODIS data, still offers observations useful 
for initial examinations of fire–forest relationships 
despite lower resolution.

Finally, improvements in the available data combined 
with the changing nature of fire in the tropics, requires 
adaptive fire-oriented deforestation warning systems. 
The modeling framework presented here can be easily 
expanded, and thereby constantly evolve to accom-
modate improved measures of fire and forest cover, as 
well as changes in spatial relationships and patterns of 
fire and forest cover.

Conclusions

Current mechanisms focused on minimizing forest loss 
and degradation will benefit from integrating continu-
ously improving fire and forest cover observations, as 
well as modeling the spatial relationships between fire 
and forest. We found that quantifying the distance to an 
active fire is a simple and easy method to identify areas at 
risk of deforestation. The modeling approach is also easy 
to implement, allowing national agencies responsible for 
monitoring forest cover to quickly define the spatial rela-
tionship between fire and forests. The distance rela-
tionship can then be integrated into early-warning 
systems used for monitoring and managing fires in 
Colombia. The free, easily accessible nature of the data, 
and the simple approach to measuring spatial relation-
ships, distance, allows for transferability to other regions 
in the tropics. Additionally, this added value to early-
warning systems can be used by government and moni-
toring institutions for which funding is often limited. The 
efficiency of the methods presented here can be used by 
many national monitoring offices more effectively than 
complex modeling.
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Dávalos, L. M., A. C. Bejarano,  M. A. Hall,  H. L. Correa,  
A. Corthals, and O. J. Espejo. 2011. Forests and drugs: coca-
driven deforestation in tropical biodiversity hotspots. 
Environmental Science & Technology 45:1219–1227.
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